Nutrient Regulations Impacts to the San José-Santa Clara Regional Wastewater Facility

Transportation and Environment Committee

November 6, 2023

Eric Dunlavey, Program Manager, Environmental Services Jennifer Voccola Brown, Division Manager, Environmental Services

Regional Wastewater Facility

- Operating continuously since 1956
- Largest advanced wastewater facility in West
 - 167 MGD capacity
- Serves
 - 1.5 million people
 - 17,000 businesses
 - 8 cities & County
- Subject to multiple discharge permits

2

Nutrient Permit

- SF Bay has much higher nitrogen levels than other large urban Bays
- 2/3 of Bay's nutrients from wastewater treatment plant discharges
- Group Nutrient Permit since 2014

Wastewater

Why Nutrients Matter?

- Elevated nutrients can lead to excess algae growth
- Excess algae growth can:

Lower dissolved oxygen, suffocating fish

Elevate levels of toxin producing algae (HABs)

The August 2022 Red Tide

- Heterosigma akashiwo
 - Toxic effects
 - Brown or red water

San Francisco Chronicle

Poop and pee fueled the huge algae bloom in San Francisco Bay. Fixing the problem could cost \$14 billion

Lower South Bay Bloom Conditions

Conditions didn't degrade in Lower South Bay like they did in South and Central Bays.

Regulatory Consequences of Bloom

7

egional

Regulatory Consequences of Bloom

- Two Limits proposed by regulators for the new permit:
 - 1. Interim Limit that must be complied with from 2024 2034
 - 2. <u>Final Limit</u> that must be achieved by 2034 and maintained in perpetuity
- The Challenge for RWF:
 - Nitrogen that RWF receives will change due to increased population and flow
 - Increased nitrogen removal efficiency will be necessary to meet fixed limits
 - Removing more nitrogen requires additional management actions, including process improvements that increase capital costs

Nutrient Management Options

Treatment Process Upgrades (will be required)

Water Recycling (projected expansion)

Nature-based Solutions (under evaluation)

Nutrient Management Options

Nitrogen Management Strategy	Importance for Compliance	Cost per kg nitrogen reduced	Implementation timing
Process Upgrades – Phase 1	Very High	N/A	2029
Process Upgrades – Future phases	Very High	N/A	2032 – 2041
Recycled Water Expansion	High	\$64	2024 - 2034
Potable Reuse	Low	\$15,560	TBD
Nature Based Treatment Solutions	Medium	TBD	TBD

Conclusion – Ongoing Actions

- Continue engagement in development of nutrient regulations
 - Positions taken are science-based
 - Ensure RWF requirements account for past upgrades
- **Continue Planning** the initial phases of process upgrades
 - Necessary to meet regulations long term
 - Phase 1 implementation demonstrates commitment
- Continue to explore and implement alternative nutrient management actions as appropriate
 - Non-potable recycling and nature-based treatment provide additional flexibility to future capital upgrade timing.

